Ice Sheet Disintegration
A good perspective on this issue is provided in the 16 March 2007 issue of Science by Shepherd and Wingham (2007), who review what is known about sea-level contributions arising from wastage of the
Antarctic and Greenland Ice Sheets, focusing on the results of 14 different satellite-based estimates of the imbalances of the polar ice sheets that have been derived since 1998. These studies have been of three major types - standard mass budget analyses, altimetry measurements of ice-sheet volume changes, and measurements of the ice sheets' changing gravitational attraction - and they have yielded a diversity of values, ranging from an implied sea-level rise of 1.0 mm/year to a sea-level fall of 0.15 mm/year.
Based on their evaluation of these diverse findings, the two researchers come to the conclusion that the current "best estimate" of the contribution of polar ice wastage to global sea level change is a rise of 0.35 millimeters per year, which over a century amounts to only 35 millimeters, or less than an inch and a half.
Yet even this small sea level rise may be unrealistically large, for although two of Greenland's biggest outlet glaciers doubled their mass-loss rates in 2004, causing many to claim that the Greenland Ice Sheet was responding more rapidly to global warming than expected, Howat et al. (2007) report that the glaciers' mass-loss rates "decreased in 2006 to near the previous rates." And these observations, in their words, "suggest that special care must be taken in how mass-balance estimates are evaluated, particularly when extrapolating into the future, because short-term spikes could yield erroneous long-term trends."
Other findings also contradict Hansen's claim that "increasingly rapid changes on West Antarctica and Greenland ... are truly alarming." Writing in the 30 March 2007 issue of Science, for example, Anandakrishnan et al. (2007) describe a sedimentary wedge or "till delta" deposited by and under West Antarctica's Whillans Ice Stream that they detected via radar surveys made from the floating Ross Ice Shelf. This grounding-line buildup of sedimentary material, as they describe it, "serves to thicken the ice and stabilize the position of the grounding line," so that "the ice just up-glacier of the grounding line is substantially thicker than that needed to allow floatation." Consequently, they say that "the grounding-line will tend to remain in the same location ... until sea level rises enough to overcome the excess thickness that is due to the wedge."
So how high would the sea need to rise to "unground" the Whillans Ice Stream and wrest it from the continent? In a study that analyzes this question in detail, Alley et al. (2007) find that "sea-level changes of a few meters are unlikely to substantially affect ice-sheet behavior," and they conclude that a rise on the order of 100 meters might be needed to "overwhelm the stabilizing feedback from sedimentation." In fact, Anderson (2007) states that "at the current rate of sea-level rise, it would take several thousand years [our italics] to float the ice sheet off [its] bed." What is more, Alley et al. say that the ice sheet's extra thickness up-glacier from the grounding-line wedge will tend to stabilize it against "any other environmental perturbation."
With respect to the range of applicability of the findings of Anandakrishnan et al. and Alley et al., Anderson notes that "grounding-zone wedges are common features on the continental shelf, including the Ross Sea Shelf," and that "all ice streams of the Siple Coast have an anomalous elevation and stop at the grounding line," which leads him to conclude that "this mechanism for stabilization of the grounding-line is likely to be widespread." Consequently, Anderson concludes that "sea-level rise may not destabilize ice sheets as much as previously feared," which in turn suggests that sea level itself may not rise as fast or as high as previously feared. So what do actual sea level data suggest?